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Problems of existence of periodic solutions for various nonlinear equations of the
continuous media mechanics are investigated in a number of papers,e. g. in [1,
2]. The present paper proves the existence of an ®-periodic solution for non-
linear equations of anisotropic inhomogeneous shallow shells of variable thick-

ness, with damping taken into account.

1, Basic relationships, Let the median surface of the shell § be defined by
the equation r = r (a,, &) which maps S homeomorphically onto the domain
of variables @,, @, with the boundary I'. We consider the following variant of the non-
linear theory for an elastic anisotropic inhomogeneous shallow shell of variable thickness:

ey = en + kulty 4+ Yapa? = A7'te, + Ara, (4142 Wyt kyguy + Lppy?
2845 = 2e43 + 2k10uy + PP = 4,145 (U147 )e, +
Ay AT (g A3 Ny 4 k15U +-PyPs
2015 = — A147" (Y147 )e, — AT Az (V245")s,
*11 = — A1 — A2 (Ards) ™ Wy = AU, (22
Tij = Eijwiee, Mij = Dijian, Dijey = Y/sh*Eijury Eijiy = Expij = Eja

where the notation used is that of [3, 4].
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The differential equations of oscillations of the shell with damping taken into account

can be written in the form
u 4+ ew, + Au 4 Bu=F (1.1

where € > ( is a constant, F is a known vector function of time, and the subscript ¢
denotes the derivative with respect to ¢ . Detailed expressions for the linear Au and
the nonlinear Bu part of (1. 1) not depending explicitly on ¢, are given in [5].

Let the shell be acted upon by the body forces F , @ -periodic with respect to time.
We formulate the following problem: to find a vector u (a,, @2, t) = (U, Uy, Ug),
(&, g = Q, — oo << t < 4 oo) satisfying Eqgs. (1. 1) and the conditions

Ulp=1u Ir =0 (1.2
usgpz%P=0 (1.3)
u(t+ o) =u(l), w4+ o) =u /() (1.4)

2, Fundamental assumptions, Let the following conditions be satisfied:
1) @ is a finite sum of bounded star domains,
2) T iz a contour of the Liapunov class A, (m, 0),
3) the coefficients of the first quadratic form of the surface S are 4; &L~ (Q),
and their derivatives are 4;,, = L™ (Q), i, j = 1. 2,
4) the curvatures of the median surface %;; &= L? (Q)~,
5) the shell thickness 24 (ot;, oty) = L% (Q)e,
6) the elastic characteristics £, (o0, @) € L™ (Q) and the inequality

. Pp. @
meis e < Eigmesiten® < mae; e
holds for all symmetric tensors ¢;,° almost everywhere,

7) the functions A;, & and E;j;, are bounded from below by paositive constants,
The basic spaces.
Space H, (Q). The space H, () is a Hilbert space obtained by the closure of the
set C; of functions uy;e= C®(Q) satisfying the conditions (1.3) and (1.4) in the norm
corresponding to the scalar product

@ - uP)mge = § D@ xPdQ,  dQ = AyAydoyday
Q

Space H, (). The space H, (Q) is a Hilbert space obtained by the closure of the
set (', of pairs of functions y* (uy, Up) € CO (Q) satisfying the conditions (1. 2) and
(1.4) in the norm corresponding to the scalar product

2
@® . u Py = 3 Eijpeflel?dQ

Space Hy(Q). The space H; (Q) is a Hilbest space of the vector functions u (u,,
Uy ug) such that ugz = H, () and u* & H, (Q) with the naturally introduced
scalar product H; = H, X H,.
Space X;. The space X, is a Hilbert space obtained by the closure of the set
€, X C, in the norm corresponding to the scalar product

(u(l) . u(2>)1 — 3 20k (um (2) -+ u(x) (z) + u(l) (2)) do
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where o (x;, oty) > O is the shell material density.

Space X, (0, w). Let E; = C, X C, and E, be a set of elements u (¢} depen-
ding on the parameter ¢ and such,that uw & E, and u, &= X, forany — oo < t <
+ oo, with the finite norms

max [uf, max .. S | o) dt
[
We call the closure of the set £, in the norm corresponding to the scalar product

o

@ w0 = § [ - u®) + @ )y, g1t
the space X, (0, o) .

Let Z4 (0, ®) be a subset of the elements belonging to £ which can be represented
in the form of the finite sums Xdj ({) @, where di (t) &= C® (0, w), and satisfy (1.4),
and @, & H, (Q). Following the proofs given in [5], we prove the following lemmas:

Lemma 1. H;(RQ) isthe space W = W,V (Q) x W,V (Q) X Wi @ (Q),
and the norms of Hj () and W are equivalent on H, ().

Lemma 2. A complete system of vectors {Y, (Xim» Xom> Xsm)} exXists in the
space H, (Q).The system can be regarded as orthogonal in H; (Q) orthonormal in
X, and such that,if (Xip, Xiph = 1, then (jp-Aiph = 0, 1,7 =1, 2,3, p = 1,

R0

Lemma 3. X, (0, ®) is a separable Hilbert space and the set E5 (0, ®) is dense
everywhere in this space,

Lemma 4, The element u, of X, and u the element of H, (Q) are functions of
0 < t <{ @ and continuous almost everywhere.

3, Generalized solution and the solvability of the problem,
8) let the following conditions hold:

F(t+ @) =F (), max|F|, < oo (F = (Fy, Fo, F3)2
As we know, the equations of motion of the shell can be expressed, in accordance with

the Hamilton-Ostrogradskii principle, in the form

S {'— (u/* - du*)y - & (u* - du*)y +

]
\ 7. (u) ;5 (Bu*) dQ — (F* . Su*),} dt = 0
Q

o

§ G- Susn-t- e (r- gy +- § {Tstw sty + i) (Bues)+
0 [
203 () 1 (8us) |+ M () 5 (6u)} 2 — (Fa - ughf dt = 0

where Su = (8u,, 8u,, Ouj) denotes a possible displacement,
Definition, We shall call the generalized w-periodic solution of the problem
(1. 1) — (1.3) the vector function U ) satisfying the conditions

a) u(t+ o) =wu (), u{ - o0)=nu (),
b) max|uf;, maxfulag), [ule. are finite
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¢) the Hamilton~-Ostrogradskii equations hold for any ou & H, (Q) strongly
differentiable in .

Applying the usual variational calculus techniques, we can reduce the problem of find-
ing a generalized, o - periodic solution, to that of solving the operator equation (1. 1) in
the space X, (0, ®).

We can find an approximate generalized solution using the Bubnov-Galerkin method
in the following manner: we construct a sequence {u,} in the form v, = ¢, () ¥, +
gs () Lz + --- + gn (1) 4n where Ym are those defined in Lemma 2, The vector
(qn (), CQnt ) = (g1 (8)s - gn ), qu,. .. qnt (1)) is determined as a peri-
odic solution of the following nonlinear system of ordinary differential equations:

(Unte + Yomhs + & (e Ay +§ T () 55 (4m*) Q2 — (F* - )y — 0 (3. )
4]

(Uantr * Yam)1 + € (Usnt - Xsm)1 + S {Tij(“n)[kijx:;m+ %‘Pi(usn)‘pf(XaM)'{' (3.2)
b}
% P; (Uan) P (Xam)] -+ M (u,) %;; (”m)} dQ — (F, - Xsm)r = 0

Theorem. Let the conditions (1) — (8) hold and let {¥,,} be the system of vectors

defined in Lemma 2, Then

a) the system of equations (3. 1), (3. 2) has at least one ®w-periodic solution for any
value of n,

b) the set of approximations {u,} is weakly compact in X, (0, 0),

c) each weak limit {u,} in X, (0, ») represents a generalized - periodic
solution of the problem (1, 1) — (1. 4).

The most important pointof the proof of the above theorem consists of confirming that
Egs. (3.1), (3.2) are dissipative [6]. The hasic diffexence between the Bubnov~Galerkin equa-
-tions in the theory of shallow shells and the corresponding equationsin the theory of thin
plates [2] reveals itself in the following. Let the positive definite functional of the po-
tential energy of the shell .
O u) = 5\ {7350 &35 (W) + M () i ()} 42
2
be defined on the space H; (Q), The form @, = @ (u,) in the theory of plates can
be written for ¢ (1) as the sum @, = Dy, + Dy, of the forms of the second and
fourth order. The proof of the dissipative character given in [2] is based on the fact that
not only @, is a positive definite form of the variables ¢, but also
' (2o 2 4
Z (m n) Om = (D‘.’.n + *(Din
m=1

In the theory of shallow shells @, == 0y, + @3, + Dy, where D,, is a third order
functional in ¢y,. For this reason the form 2®,, 4 3®g, + 4d,, will not be posi-
tive definite with respect to gm,and this requires an approach different from that used
in the theory of shelis, To prove the theorem, we multiply (3. 1) and (3. 2) by ¢z, sum
over m from 1 to 7, and combine the resulting expressions

& (10l D) = (F -ty — e
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Next we introduce the function

n

Vo ()= Vaga(t), gt (1) = ‘%‘u“m sz + @y ta Z [2(a, % Ym™h %

and impose the following restrictions on the constants o >> 0 and § > 0 :
Y, —ag? >0, B— e >0

Taking the Young's inequality with the constant £,2 into account, we can prove the suf-
ficiency of these inequalities for the positive definiteness of V, (¢). The derivative
Vot (1) is found using Eqs, (3. 1) and (3. 2):

n

Vm (t) == (F " uni)l - gﬁunlﬂlz + &% Z [2 (unt* * Xm*)12+

M=z}
n

(u3nt'x3m)12]+ c‘z [2 {“n* ’ Xm*)l {'— & (uni* ) Xm*)l -

==}

| 7 0) €3 (n*) 42 4 (F* - % *} + (tan - Fomh {—
Q

(Mont = Yomhr — 5 15 ()| Kiham - i (430) W5 (o) +
3
P an) b Ctam) |+ Mo (Wi ()} 42 + (F3 - Aomhe} | +
232 [2 (@* - Xm*N(Wne® + Xm™ + (Usn * Ksm)r(Uon:- Xam)l]
Man}

Let now ae = 2f. Then the Young's inequalities with the constants e,* and e4? yield
Va(®) < — afuah? — o § {Ts5 (w2805 () — hijitsn] +
M; (uy) %35 (up)} dQ +n°°832"“n L+ b F?
Let a =& — et — 20 >0, b = Yy, ? 4+ aey? and

D,°= S‘ (Tiun)2845(0,) — Kijign] + Mij () %ii(uy)} 3Q — e {u, i

a

Lemma 5. Let |u @ = R be asphere in the space H, (Q) , of sufficiently
large radius R and independent of Z. If the element W, (£) belonging to the space
H, (Q)for every fixed — 00 < ¢ <C oo and all n, falls at some ¢ = t* on a sphere
of sufficiently large radius R , then the inequality 5 (t*) > 6R where § >0 is
a constant independent of u, (*) , is satisfied.

To prove the lemma we repeat the basic argumentation used in [4] in deriving the
a priori estimate, and take into account the fact that the constants used in [4] are
independent of w, (1) .

From Lemma 5 it follows that the functional ®,° increases in the space , (Q).
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therefore a constant mg >> 0 exists independent of u, (¢) and {, and such that the form
@,° J- m3 will be positive definite in H4 () (we can take e.g. mg = | inf®,° |

in the sphere || un |my@) <C R). The structure of the forms V,, () and a | u, |,* +
a@" implies that constants m >> 0 and ¢ >> ( exist, are independent of Wy, (£) and ¢

and such that
o] un |i? + 0D + ¢ >mV,

The relatfons connecting the constants m and ¢ with &2, &, ;2 ¢« and f§ can be
obtained in an explicit form. Taking Lemma 5 into account, we can write

from which Var () < —mVo () + ¢ + b Ey?
Va(®) SV (@n (fo)s @n () ™" 4 (¢ - b max | F[H) m™ X (1 — e=mit=t)
limsupV,() <(c+b max [F[3)m1< oo when {— o0 (2.3)

for any finite V, (t,), ¢, and all n, This in tumn implies that max, | upy, |; << Vi
max, | u, [#y@) < Y2 and | W, [; << vs , with the constants Y1, V2 and Vs finite and
independent of u, (), as well as the dissipative character of the system (3. 1), (3. 2).

The latter now implies the existence [6] of at least one subharmonic oscillation of period
k.o, where k, is a positive integer dependent on n.

It is proved that the period of oscillations for the problem (1.1)—(1.4) is not k&, ®
but @, for any n. We introduce the operator K (q, (0), qn: (0)) = (45 (®), qn (@)
in the 27 -dimensional space of the coefficients (q,, q,,). The transformation intro-
duced here, is continuous. We consider the domain

Vo (@n (0), qne (0)) < M

where the constant M is independent of n and . The relation (3, 3) implies the exis-
tence of such a constant. Let W be taken such that

M*=M"(c+bmax|F|*)m? <1
t

Then, taking (3. 3) and Lemma & into account, we show that for a sufficiently large M,
Vo (4@n (@), @nt (@) < Vi (€0 (0), gy (0)) o™ % (1 —
™) <V, (gn (0), gne (0))

Vn (qn (O)’ qnt (0)) < M

is a star domain. The Schrauder theorem implies the existence of at least one fixed
point of the transformation K. The corresponding solution of the system (3. 1),(3. 2)
will be @~-periodic for any n. From the relation (3. 3) and the fact that X, (0, o) isa
Hilbert space, follows the weak compactness of the sequence {u,} in X, (0, ») and
the inequality

and the domain

G0k, 0,0 << liminfju,fs, 0,0 for n—>o00

where u, is a weak limit of the sequence {u,} in X, (0, @) . Using the imbedding
theorem [7], we prove, as in [5], that u, represents a generalized, ®-periodic solution
of the problem (1. 1) — (1.4). This proves the theorem.

Notes. 1°, If e.g. we take the constants g2, &,% €;2, @ and § satisfying the inequal-
ities

a<llye, {(2e)7'<e?2< 21, PBLse? g2<e ae=2p

then all restrictions imposed on these constants will be satisfied.

2°. Using the proof of the theorem, we can obtain theorems of existence of an -peri-
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odic solution of the problem on oscillation of a shell with damping taken into account,
under the conditions ity
uilp=g; (s, ), 1=1,2.8, —~ =)

gi(s, t 4wy =g;(s, 1), gl ltw)=g; (s, 1), j=1,2234

gis, )L 0, 0), g Hel>0 0), j=1.2,34
g, 0EH,, (D, neeH, (N, j=1,214
where H, (T) and Hy, (I') are the Sobolev~-Slobodetskii spaces,
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We investigate short-wave oscillations of a plane elastic body, concentrated in
the vicinity of a smooth convex boundary. We develop an asymptotic process of
integrating the dynamic equations of the plane theory of elasticity, We obtain
the expressions for the eigenfunctions and natural frequencies of the short-wave
oscillations for free and clamped boundaries.

The short-wave (high frequency) oscillations can be studied with the help of
various asymptotic methods based, in particular, on the method of rays of geo-
metrical optics. A systematic presentation of the method of rays and its deve-
lopment in the boundary value problems of mathematical physics are given in
[1, 2]. The method is used to investigate the asymptotic behavior of the eigen-



