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1 

Problems of existence of periodic solutions for various nonlinear equations ofthe 
continuous media mechanics are investigated in a number of papers, e. g. in [l, 

21. The present paper proves the existence of an o-periodic solution for non- 
linear equations of anisotropic inhomogeneous shallow shells of variable thick- 
ness, with damping taken into account. 

1. Boric relatlonrhipr. Let the median surface of the shell S be defined by 
the equation r = r (ai, as) which maps S homeomorphically ontd the domain $2 

of variables a,, aa with the boundary r. We consider the following variant of thenon- 

linear theory for an elastic anisotropic inhomogeneous shallow shell of variable thickness: 

ali = eli + &ul + ‘/a*?= A;l~ia, + A1,,(A1A2)-1~Z+- lElluQ + r2q12 

2%2 = h2 + 2kl2% + 9192 = &4,'(ulA;'),* + 

A2A;'O~2A,1)a,+ 2&2~2+91$2 

2x 12 = - 4Ai1(qwG1)a, - A;lA,(~,,A,'),, 

x11 == - 4'~1a, - 4,&2(&42)-'7 $1 = A;'usal (1 t 2) 

Tij = EijkFklv Mii = DiiklXklr Dijkl = 1/&2Eijkl, Eijkl = Eklii = Ejikl 

where the notation used is that of [3, 41. 
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The d~fe~ntial equations of oscillations of the shell with damping taken into account 
can be written in the form 

utt + e!rt + AU + Bu = F (1.1) 

where E > 0 is a constant, F is a known vector function of time, and the subscript t 
denotes the derivative with respect to t . Detailed expressions for the linear Au and 
the nonlinear Bu part of (1.1) not depending explicitly on t , are given in [5]. 

Let the shell be acted upon by the body forces F , o -periodic with respect to time. 
We formulate the following problem: to find a vector u (a,, as, t) = (~1, u2, us), 

t ( + co) satisfying Eqs. (1.1) and the conditions 

Ul jr = u2 Ir = 0 (1.2) 

(1.3) 

2, Fund~m8~tal l 8sumption8, Let the following conditions be satisfied : 
1) Sz is a finite sum of bounded star domains, 
2) I? is a contour of the Liaplnov class A, (m, 0), 
3) the coefficients of the first quadratic form of the surface S are A i EL* (Q), 

and their derivatives are Ai,; EL” (c;Z), i, j = 1. 2, 
4) the curvatures of the median surface kij E L2 &I)“, 

5) the shell thickness 2h (aI, a2) E L” (SJ},, 
6) the elastic characteristics Eijkl (a,, a,) E La (9) and the inequality 

mleij”ei jQ < Ei j&i j”t?ki’ < m,ei joei j” 

holds for all symmetric tensors ei F almost everywhere, 
7) the functions Ai, h and Eijkr are bounded from below by positive constants. 

The basic spaces. 
S p ace jj’r (52). The space HI (Q) is a Hilbert space obtained by the closure of the 

set Cr of functions us e C(s)(~~) satisfying the conditions (I. 3) and (1.4) in the norm 
corresponding to the scalar product 

(r$ * $))E@) = s 
D, . $p’ *‘?‘aQ vki kI +2 3 ai2 = A1A2daIda2 

s pace Hz (62). The spacek, (a) is a Hilbert space obtained by the closure ofthe 
set Cs of pairs of functions u* (al, us) E C(r) (Q) satisfying the conditions (1.2) and 
(1.4) in the norm corresponding to the scalar product 

($(I) , u*@) n 
h&(O) = \ &ik$kl% 

(1) @)dQ 

a 

Space H, (62). The space Ha (SJ) . u a Hilbed space of the vector functions u (ul, 
u2 u3) such that us E H, (Q) and u* E I$, (St) with the naturally introduced 

scalar product H, = HI x HZ. 

Space X1. The space X, is a Hilbert space obtained by the closure of the set 
Cr X C, in the norm corresponding to the scalar product 

(u(l) . #Q1 = j 2ph (u~)u:~) + uc)up) + ut)ug)) cEQ 
sz 
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where p (aI, aa) > 0 is the shell material density. 

Space x:, (0, WI. Let E, = C, X cs and Es be a set of elements U (t) depen- 
ding on the parameter t and such, that u E E, and tat E X, for any - 00 ( t ( 
+ 00, with the finite norms 

0 

mtax 1111 Illr yx II Ut 1117. s II II u a,,(Q) dt 
0 

We call the closure of the set Es in the norm corresponding to the scalar product 
w 

(IL@) * d2)),,,,, = s [(d” * d”‘), + (u(l) * d2))H3(*)]dt 
n 

the space Xs (0, 61) . 
Let Es (0, w) be a subset of the elements belonging to Es which can be represented 

in the form of the finite sums Zd, (t) qr, where dt, (t) E C@) (0, w), and satisfy (l-4), 

and (Pk E H, (a). Following the proofs given in ES], we prove the following lemmas: 
Lemma 1. Hs (Q) is the space W = Wi”) (Q) x kQ1’ (Q) X PV; @) (Q), 

and the norms of Hs (a) and W are equivalent on 11, (SZ) . 
Lemma 2. A complete system of vectors (xv, (xlln, x2mr ~a~)} exists in the 

space IT, (Q-The system can be regarded as orthogonal in H, (8) orthonormal in 

X, and such that, if f%ip, XQ,)~ = l1 then (~~~‘Xj~)~ = 0, i, j = 1, 2, 3, p = 1, 
* . .f n, j # i. 

Lemma 3. X2 (0, co) is a separable Hilbert space and the set Es (0, a) is dense 

everywhere in this space. 

Lemma 4. The element uI of X, and II the element of H, (a) are functions of 

0 < t < (9 and continuous almost everywhere. 

3. Grnsrrliesd roiution and the rolvabiltty of the problem, 
8) let the following conditions hold: 

F (t + o) :=y; F (f), max jl F II1 < 00 (F = (F,, Fz, FJ] 

AS we know, the equations of motion of the shell can be expressed, in accordance with 
the Hamilton-Os~ogra~kii principle, in the form 

0 

- (I$* * &I,“)~ -t- E (Ut* . 6u*)1 + 

h Tij (u) eii (&I*) dB - (F” . Su*),) dt = 0 

where 6u = (6u,, &a, au,) denotes a possible displacement. 

Definition. We shall call the generalized w-periodic solution of the problem 

(1.1) - (1.3) the vector function u (8) satisfying the conditions 

a) u (t + 0) = ut (t), uf (t + o)= ut (t), 

b) max nut [iI3 max flu ~H,w, [i~lj~,O,~ are finite 
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c) the Hamilton-Ostrogradskii equations hold for any bu E Hs (Q) strongly 
differentiable in t. 

Applying the usual variational calculus techniques, we can reduce the problem of find- 
ing a generalized, o-periodic solution, to that of solving the operator equation (1.1) in 

the space X2 (0, 0). 
We can find an approximate generalized solution using the Bubnov-Gale&in method 

in the following manner: we construct a sequence {un} in the form U, = q1 (t) x1 + 

Qz 0) x2 + .*. + q,, (1) xn where Xrn are those defined in Lemma 2. The vector 

(q,, (t), q,,t (r)) = (qr (r), . . . qn (t), ‘91, (r), . . qnt (t)) is determined as a peri- 
odic solution of the foliowing nonlinear system of ordinary differential equations: 

(u 3ntt - Xsmh -I- e (U3nl * Xm)l + \ ~ij(“n)[kijX:.m+ $ ~i(&m)~j(X~m)+ (3. 2) 
u 

Theorem. Let the conditions (1) - (8) hold and let {Xm} be the system of vectors 
defined in Lemma 2. Then 

a) the system of equations (3. l), (3.2) has at least one o-periodic solution for any 
value of 11, 

b) the set of approximations {u,,} is weakly compact in Xs (0, o), 

c) each weak limit {U,,} in X2 (0, 0) represents a generalized o-periodic 
solution of the problem (1.1) - (1.4). 

The most important point of the proof of the above theorem consists of confirming that 

Eqs. (3,lJ, (3.2) are dissipative [S]. The basic difference between the Bubnov-Galerkinequa 

etions in the theory of shallow shells and the corresponding equations in the theory of thin 
plates [2] reveals itself in the following. Let the positive definite functional of the po- 
tential energy of the shell 

0 (U) = f \ {Tij (U) Qj (U) + lI!I<j (U) Xii (U)} d<! 
65 

be defined on the space H3 (Q) . The form CD,% s 6> (u,,) in the theory of plates can 

be written for qm (1) as the sum cD~ = Os,, + (DJn of the forms of the second and 
fourth order. The proof of the dissipative character given in [2] is based on the factthat 
not only (D, is a positive definite form of the variables q,,, , but also 

In the theory of shallow shells @)lL -= @s,, + @a,, + a)~~, where m3,, is a third order 
functional in qm. For this reason the form k<Ds,, f 3@3n + do,,, wilI not be posi- 
tive definite with respect to qm,and this requires an approach different from that used 

in the theory of shells. To prove the theorem, we multiply (3.1) and (3.2) by qmt, sum 
over m from 1 to n, and combine the resulting expressions 
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Next we introduce the function 

and impose the following restrictions on the constants a > 0 and 8 > 0 : 

Ii, - a&12 > 0, fJ - ‘izq-2 > 0 

Taking the Young’s inequality with the constant er s into account, we can prove the suf- 
ficiency of these inequalities for the positive definiteness of V, (t). The derivative 

V,, (t) is found using Eqs.(3.1) and (3.2): 
n . 

\ Tij (%I eij (xpII*l &‘J + (F* * xm*),) + (zL~~ * 3/3m)l { - e x 
P 

+ 4)i C”3JUi (X3m)3 + Mij (&dXij (Xm)} dQ + (Fs . X&)1)] + 
r& 

2Bc[ 
2(u,* * xm*M%lt* * xm*h + P37z * X3mW3nt Xsmh 

-1 I 
Let now UE = Z/3. Then the Young’s inequalities with the constants &” and e32 yield 

Y,(Q<---~urat~r2- a s (Tij (QI%j (%) - lCijU8nl + 

Mij(%)xij(Un)}dQ +*~‘lunfl~% + b[F11’ 

Let a = (5 - lfzez2 - 2a > 0, b = 'izez-" + ae3-a and 

(RBno S 1 (Tij(un)[2Qj(&J - kjh*l + Mij (&a) %j(%)} dQ - e3* II % h3 
n 

L e m m a 5. Let // u I\H,~Q, = R be a sphere in the space H, (a) , of sufficiently 
large radius fi and independent of t. If the element % (r) belonging to the space 

Ha (52) for every fixed - 00 < t < oo and all n, falls at some t = t* on a sphere 

of sufficiently large radius R , then the inequality Wn (t*) > 6R where 6 > 0 is 
a constant independent of u, (t*) , is satisfied. 

To prove the lemma we repeat the basic argumentation used in [4] in deriving the 
a prior i estimate, and take into account the fact that the constants used in [4J are 

independent of u, (t) . 
From Lemma 5 it follows that the functional ano increases in the space fis (a). 
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therefore a constant m, > 0 exists independent of u, (t) and t, and such that the form 
CD,” J; rns will be positive definite in Hs (Q) (we can take e.g. m, = 1 inf@,’ 1 

in the sphere 1 % l\a,cn, < R). The structure of the forms V, (t) and a 11 u,,~ ala f 
&J” implies that constants m > 0 and c > 0 exist. are independent of U, (t) and t 

and such that 
a II “nt Illa + a@,” + c a mv, 

The relations connecting the constants m and c with Er’, es2, &s2, ti and p can be 
obtained in an explicit form. Taking Lemma 5 into account, we can write 

from which VM (Q < - mv, (9 + c + b II E l/l2 

V,(t) < V, (qn (t,), qnt (t,)) e-m(‘-‘J + (c + b m;x )I F jl*) m-l x (1 - e-m(+-lo)) 

lim sup Vn (t) < (c + b m;x 11 Fl[12) m-l < 00 when t + 00 
(3.3) 

for any finite V, (t,), t, and all n, This in turn implies that maxt 1 U,t 111 < Y17 
maxt II U, Uzwa) < YZ and II U, 111 < ~3 , with the constants Yl, Y2 and Ys finite and 
independent of u, (t), as well as the dissipative character of the system (3.1),(3.2). 
The latter now implies the existence [S] of at least one subharmonic oscillation of period 
k,o, where k, is a positive integer dependent on n. 

It is proved that the period of oscillations for the problem (1.1) - (1.4) is not k, o 
but CO, for any n. We introduce the operator K (qn (0), qnt (0)) = (q, (co), q,, (w)) 
in the 2n -dimensional space of the coefficients (qn, qnt) . The transformation intro- 
duced here, is continuous. We consider the domain 

where the constant A! is independent of n and t. The relation (3.3) implies the exis- 
tence of such a constant. Let ‘21 be taken such that 

M* = M-l (c + b m;x II F )112) m-l < 1 

Then, taking (3.3) and Lemma 5 into account, we show that for a sufficiently large M, 

Vn (9, (a), % (0)) < V, (9, (O), q,, (0)) [e-mf + n/I* (1 - 

and the domain e-V < K (qn (O), q,l (0)) 

v7l (9, CO), q?Z, (0)) =G M 
is a star domain. The Schrauder theorem implies the existence of at least one fixed 
point of the transformation K. The corresponding solution of the system (3.1),(3.2) 
will be o-periodic for any II. From the relation (3.3) and the fact that X2 (0, co) isa 
Hilbert space, follows the weak compactness of the sequence (rrn} in Xs (0, 0) and 
the inequality 

I/ no 112, o, o < hn id 1) u, Ij2.0, o for n ---f 00 

where u. is a weak limit of the sequence {un} in X2 (0, o) . Using the imbedding 

theorem [‘I], we prove, as in [5], that u. represents a generalized, o-periodic solution 
of the problem (1.1) - (1.4). This proves the theorem. 

Notes. 1”. If e.g. we take the constants E12, E*~, eg2, a and b satisfying the inequal- 
ities 

a < II4 E, (2&)-r < &r2 < 2&-l, h < r/8 9, &22 < E, ae = 28 

then all restrictions imposed on these constants will be satisfied. 
2’. Using the proof of the theorem, we can obtain theorems of existence of an o-peri- 
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odic solution of the problem on oscillation of a shell with damping taken into account, 
under the conditions 

UiIf=gi(S,t), i=l,2,3, 2 
r 

= g4 (s, t) 

gj (‘, ’ + O) = Rj (‘, ‘), Fiji (8, t + 0) = gjt (S, t), j z 1, 2, 3. 4 

gj (‘, ‘) E Lm (O, O), fijt (S, t) E L” (03 CO), i = 1, 2, 3, 4 

gj (~7 t) E HI/* (I) 1 g3(s, t)EH,,,(lJ, j=l, 2, 4 

where H,il (T) and H,,, (T) are the Sobolev-Slobodetskii spaces, 
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We investigate short-wave oscillations of a plane elastic body, concentrated in 
the vicinity of a smooth convex boundary. We develop an asymptotic process of 
integrating the dynamic equations of the plane theory of elasticity. We obtain 
the expressions for the eigenfunctions and natural frequencies of the short-wave 
oscillations for free and clamped boundaries. 

The short-wave (high frequency) oscillations can be studied with the help of 
various asymptotic methods based, in particular, on the method of rays of geo- 
metrical optics, A systematic presentation of the method of rays and its deve- 
lopment in the boundary value problems of mathematical physics are given in 
[ 1, 23. The method is used to investigate the asymptotic behavior of the eigen- 


